Sub-propositional Fragments of the Interval Temporal Logic of Allen’s Relations

uncategorised
Authors

Davide Bresolin

Emilio Muñoz Velasco

Guido Sciavicco

Published

1 January 2014

Publication details

Logics in Artificial Intelligence - 14th European Conference, {JELIA} 2014, Funchal, Madeira, Portugal, September 24-26, 2014. Proceedings , Lecture Notes in Computer Science vol. 8761, pages 122–136.

Links

DOI

 

Abstract

Citation

Please, cite this work as:

[BMS14] D. Bresolin, E. Mu~noz-Velasco, and G. Sciavicco. “Sub-propositional Fragments of the Interval Temporal Logic of Allen’s Relations”. In: Logics in Artificial Intelligence - 14th European Conference, JELIA 2014, Funchal, Madeira, Portugal, September 24-26, 2014. Proceedings. Ed. by E. Fermé and J. Leite. Vol. 8761. Lecture Notes in Computer Science. Springer, 2014, pp. 122-136. DOI: 10.1007/978-3-319-11558-0_9. URL: https://doi.org/10.1007/978-3-319-11558-0_9.

@InProceedings{Bresolin2014a,
     author = {Davide Bresolin and Emilio Mu~noz-Velasco and Guido Sciavicco},
     booktitle = {Logics in Artificial Intelligence - 14th European Conference, {JELIA} 2014, Funchal, Madeira, Portugal, September 24-26, 2014. Proceedings},
     title = {Sub-propositional Fragments of the Interval Temporal Logic of Allen’s Relations},
     year = {2014},
     editor = {Eduardo Ferm{’e} and Jo~ao Leite},
     pages = {122–136},
     publisher = {Springer},
     series = {Lecture Notes in Computer Science},
     volume = {8761},
     bibsource = {dblp computer science bibliography, https://dblp.org},
     biburl = {https://dblp.org/rec/conf/jelia/BresolinMS14.bib},
     doi = {10.1007/978-3-319-11558-0_9},
     timestamp = {Wed, 07 Dec 2022 00:00:00 +0100},
     url = {https://doi.org/10.1007/978-3-319-11558-0_9},
}

Bibliometric data

The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.

  • Citations
  • CrossRef - Citation Indexes: 6
  • Scopus - Citation Indexes: 16
  • Captures
  • Mendeley - Readers: 5

Cites

The following graph plots the number of cites received by this work from its publication, on a yearly basis.

201920182017201620150123
yearcites

Papers citing this work

The following is a non-exhaustive list of papers that cite this work:

[1] A. Artale, R. Kontchakov, V. Ryzhikov, et al. “Tractable Interval Temporal Propositional and Description Logics”. In: Proceedings of the AAAI Conference on Artificial Intelligence 29.1 (Feb. 2015). ISSN: 2159-5399. DOI: 10.1609/aaai.v29i1.9406. URL: http://dx.doi.org/10.1609/aaai.v29i1.9406.

[2] D. Bresolin, A. Kurucz, E. Muñoz-Velasco, et al. “Horn Fragments of the Halpern-Shoham Interval Temporal Logic”. In: ACM Transactions on Computational Logic 18.3 (Jul. 2017), p. 1–39. ISSN: 1557-945X. DOI: 10.1145/3105909. URL: http://dx.doi.org/10.1145/3105909.

[3] D. Bresolin, E. Muñoz-Velasco, and G. Sciavicco. “On the Expressive Power of Sub-Propositional Fragments of Modal Logic”. In: Electronic Proceedings in Theoretical Computer Science 226 (Sep. 2016), p. 91–104. ISSN: 2075-2180. DOI: 10.4204/eptcs.226.7. URL: http://dx.doi.org/10.4204/eptcs.226.7.

[4] E. Muñoz-Velasco, M. Pelegrín-García, P. Sala, et al. “On Coarser Interval Temporal Logics and their Satisfiability Problem”. In: Advances in Artificial Intelligence. Springer International Publishing, 2015, p. 105–115. ISBN: 9783319245980. DOI: 10.1007/978-3-319-24598-0_10. URL: http://dx.doi.org/10.1007/978-3-319-24598-0_10.

[5] E. Muñoz-Velasco, M. Pelegrín, P. Sala, et al. “On coarser interval temporal logics”. In: Artificial Intelligence 266 (Jan. 2019), p. 1–26. ISSN: 0004-3702. DOI: 10.1016/j.artint.2018.09.001. URL: http://dx.doi.org/10.1016/j.artint.2018.09.001.

[6] G. Sciavicco, I. E. Stan, and A. Vaccari. “Towards a General Method for Logical Rule Extraction from Time Series”. In: From Bioinspired Systems and Biomedical Applications to Machine Learning. Springer International Publishing, 2019, p. 3–12. ISBN: 9783030196516. DOI: 10.1007/978-3-030-19651-6_1. URL: http://dx.doi.org/10.1007/978-3-030-19651-6_1.

[7] P. A. Wałęga. “Computational Complexity of a Hybridized Horn Fragment of Halpern-Shoham Logic”. In: Logic and Its Applications. Springer Berlin Heidelberg, Dec. 2016, p. 224–238. ISBN: 9783662540695. DOI: 10.1007/978-3-662-54069-5_17. URL: http://dx.doi.org/10.1007/978-3-662-54069-5_17.

[8] P. A. Wałęga. “Computational Complexity of Core Fragments of Modal Logics T, K4, and S4”. In: Logics in Artificial Intelligence. Springer International Publishing, 2019, p. 744–759. ISBN: 9783030195700. DOI: 10.1007/978-3-030-19570-0_48. URL: http://dx.doi.org/10.1007/978-3-030-19570-0_48.

[9] P. A. Wałęga. “Hybrid fragments of Halpern–Shoham logic and their expressive power”. In: Theoretical Computer Science 797 (Dec. 2019), p. 102–128. ISSN: 0304-3975. DOI: 10.1016/j.tcs.2019.01.014. URL: http://dx.doi.org/10.1016/j.tcs.2019.01.014.

[10] P. A. Wałęga. “Searching for Well-Behaved Fragments of Halpern-Shoham Logic”. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. IJCAI-2017. International Joint Conferences on Artificial Intelligence Organization, Aug. 2017, p. 5219–5220. DOI: 10.24963/ijcai.2017/769. URL: http://dx.doi.org/10.24963/ijcai.2017/769.