On Fixed-Points of Multivalued Functions on Complete Lattices and Their Application to Generalized Logic Programs
Abstract
Unlike monotone single-valued functions, multivalued mappings may have zero, one, or (possibly infinitely) many minimal fixed-points. The contribution of this work is twofold. First, we overview and investigate the existence and computation of minimal fixed-points of multivalued mappings, whose domain is a complete lattice and whose range is its power set. Second, we show how these results are applied to a general form of logic programs, where the truth space is a complete lattice. We show that a multivalued operator can be defined whose fixed-points are in one-to-one correspondence with the models of the logic program.
Citation
Please, cite this work as:
[SOD09] U. Straccia, M. Ojeda-Aciego, and C. V. Damásio. “On Fixed-Points of Multivalued Functions on Complete Lattices and Their Application to Generalized Logic Programs”. In: SIAM J. Comput. 38.5 (2009), pp. 1881-1911. DOI: 10.1137/070695976. URL: https://doi.org/10.1137/070695976.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] D. Acemoglu and M. Jackson. History, Expectations, and Leadership in the Evolution of Social Norms. May. 2011. DOI: 10.3386/w17066. URL: http://dx.doi.org/10.3386/w17066.
[2] D. Acemoglu and M. O. Jackson. “History, Expectations, and Leadership in Evolution of Social Norms”. In: SSRN Electronic Journal (2011). ISSN: 1556-5068. DOI: 10.2139/ssrn.1839768. URL: http://dx.doi.org/10.2139/ssrn.1839768.
[3] D. Acemoglu and M. O. Jackson. “History, Expectations, and Leadership in the Evolution of Social Norms”. In: The Review of Economic Studies 82.2 (Dec. 2014), p. 423–456. ISSN: 1467-937X. DOI: 10.1093/restud/rdu039. URL: http://dx.doi.org/10.1093/restud/rdu039.
[4] M. R. Alfuraidan. “Metric Fixed Point Theory in Spaces with a Graph”. In: Fixed Point Theory and Graph Theory. Elsevier, 2016, p. 287–363. ISBN: 9780128042953. DOI: 10.1016/b978-0-12-804295-3.50007-3. URL: http://dx.doi.org/10.1016/b978-0-12-804295-3.50007-3.
[5] M. R. Alfuraidan. “Remarks on monotone multivalued mappings on a metric space with a graph”. In: Journal of Inequalities and Applications 2015.1 (Jun. 2015). ISSN: 1029-242X. DOI: 10.1186/s13660-015-0712-6. URL: http://dx.doi.org/10.1186/s13660-015-0712-6.
[6] M. Blondeel, S. Schockaert, M. De Cock, et al. “Fuzzy autoepistemic logic and its relation to fuzzy answer set programming”. In: Fuzzy Sets and Systems 239 (Mar. 2014), p. 51–80. ISSN: 0165-0114. DOI: 10.1016/j.fss.2012.09.012. URL: http://dx.doi.org/10.1016/j.fss.2012.09.012.
[7] M. Blondeel, S. Schockaert, D. Vermeir, et al. “Complexity of fuzzy answer set programming under Łukasiewicz semantics”. In: International Journal of Approximate Reasoning 55.9 (Dec. 2014), p. 1971–2003. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2013.10.011. URL: http://dx.doi.org/10.1016/j.ijar.2013.10.011.
[8] M. Blondeel, S. Schockaert, D. Vermeir, et al. “Fuzzy Answer Set Programming: An Introduction”. In: Soft Computing: State of the Art Theory and Novel Applications. Springer Berlin Heidelberg, 2013, p. 209–222. ISBN: 9783642349225. DOI: 10.1007/978-3-642-34922-5_15. URL: http://dx.doi.org/10.1007/978-3-642-34922-5_15.
[9] M. E. Cornejo, D. Lobo, and J. Medina. “Syntax and semantics of multi-adjoint normal logic programming”. In: Fuzzy Sets and Systems 345 (Aug. 2018), p. 41–62. ISSN: 0165-0114. DOI: 10.1016/j.fss.2017.12.009. URL: http://dx.doi.org/10.1016/j.fss.2017.12.009.
[10] A. Hanjing and S. Suantai. “Coincidence point and fixed point theorems for a new type of G-contraction multivalued mappings on a metric space endowed with a graph”. In: Fixed Point Theory and Applications 2015.1 (Sep. 2015). ISSN: 1687-1812. DOI: 10.1186/s13663-015-0420-4. URL: http://dx.doi.org/10.1186/s13663-015-0420-4.
[11] P. Hitzler and A. Seda. Mathematical Aspects of Logic Programming Semantics. CRC Press, Apr. 2016. ISBN: 9780429094231. DOI: 10.1201/b10397. URL: http://dx.doi.org/10.1201/b10397.
[12] J. Janssen, S. Schockaert, D. Vermeir, et al. “A core language for fuzzy answer set programming”. In: International Journal of Approximate Reasoning 53.4 (Jun. 2012), p. 660–692. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2012.01.005. URL: http://dx.doi.org/10.1016/j.ijar.2012.01.005.
[13] J. Janssen, S. Schockaert, D. Vermeir, et al. “Aggregated Fuzzy Answer Set Programming”. In: Annals of Mathematics and Artificial Intelligence 63.2 (Aug. 2011), p. 103–147. ISSN: 1573-7470. DOI: 10.1007/s10472-011-9256-8. URL: http://dx.doi.org/10.1007/s10472-011-9256-8.
[14] J. JANSSEN, D. VERMEIR, S. SCHOCKAERT, et al. “Reducing fuzzy answer set programming to model finding in fuzzy logics”. In: Theory and Practice of Logic Programming 12.6 (Jun. 2011), p. 811–842. ISSN: 1475-3081. DOI: 10.1017/s1471068411000093. URL: http://dx.doi.org/10.1017/s1471068411000093.
[15] J. Medina and J. A. Torné-Zambrano. “Immediate consequences operator on generalized quantifiers”. In: Fuzzy Sets and Systems 456 (Mar. 2023), p. 72–91. ISSN: 0165-0114. DOI: 10.1016/j.fss.2022.08.014. URL: http://dx.doi.org/10.1016/j.fss.2022.08.014.
[16] G. Moreno, J. Penabad, and C. Vázquez. “Beyond multi-adjoint logic programming”. In: International Journal of Computer Mathematics 92.9 (Nov. 2014), p. 1956–1975. ISSN: 1029-0265. DOI: 10.1080/00207160.2014.975218. URL: http://dx.doi.org/10.1080/00207160.2014.975218.
[17] F. Ranzato. “Abstract Interpretation of Supermodular Games”. In: Static Analysis. Springer Berlin Heidelberg, 2016, p. 403–423. ISBN: 9783662534137. DOI: 10.1007/978-3-662-53413-7_20. URL: http://dx.doi.org/10.1007/978-3-662-53413-7_20.
[18] S. Romaguera, M. P. Schellekens, and O. Valero. “The complexity space of partial functions: a connection between complexity analysis and denotational semantics”. In: International Journal of Computer Mathematics 88.9 (Jun. 2011), p. 1819–1829. ISSN: 1029-0265. DOI: 10.1080/00207161003631885. URL: http://dx.doi.org/10.1080/00207161003631885.
[19] E. Saad. “Extended Fuzzy Logic Programs with Fuzzy Answer Set Semantics”. In: Scalable Uncertainty Management. Springer Berlin Heidelberg, 2009, p. 223–239. ISBN: 9783642043888. DOI: 10.1007/978-3-642-04388-8_18. URL: http://dx.doi.org/10.1007/978-3-642-04388-8_18.
[20] S. Schockaert, J. Janssen, and D. Vermeir. “Fuzzy Equilibrium Logic: Declarative Problem Solving in Continuous Domains”. In: ACM Transactions on Computational Logic 13.4 (Oct. 2012), p. 1–39. ISSN: 1557-945X. DOI: 10.1145/2362355.2362361. URL: http://dx.doi.org/10.1145/2362355.2362361.
[21] S. Schockaert, N. Makarytska, and M. De Cock. “Fuzzy Methods on the Web: A Critical Discussion”. In: 35 Years of Fuzzy Set Theory. Springer Berlin Heidelberg, 2010, p. 237–266. ISBN: 9783642166297. DOI: 10.1007/978-3-642-16629-7_12. URL: http://dx.doi.org/10.1007/978-3-642-16629-7_12.
[22] U. Straccia and F. Bobillo. “From Fuzzy to Annotated Semantic Web Languages”. In: Reasoning Web: Logical Foundation of Knowledge Graph Construction and Query Answering. Springer International Publishing, 2017, p. 203–240. ISBN: 9783319494937. DOI: 10.1007/978-3-319-49493-7_6. URL: http://dx.doi.org/10.1007/978-3-319-49493-7_6.
[23] X. Vives and O. Vravosinos. “Strategic complementarity in games”. In: Journal of Mathematical Economics 113 (Aug. 2024), p. 103005. ISSN: 0304-4068. DOI: 10.1016/j.jmateco.2024.103005. URL: http://dx.doi.org/10.1016/j.jmateco.2024.103005.