A New Multivalued Neural Network for Isomorphism Identification of Kinematic Chains

Abstract
A lot of methods have been proposed for the kinematic chain isomorphism problem. However, the tool is still needed in building intelligent systems for product design and manufacturing. In this paper, we design a novel multivalued neural network that enables a simplified formulation of the graph isomorphism problem. In order to improve the performance of the model, an additional constraint on the degree of paired vertices is imposed. The resulting discrete neural algorithm converges rapidly under any set of initial conditions and does not need parameter tuning. Simulation results show that the proposed multivalued neural network performs better than other recently presented approaches.
Citation
Please, cite this work as:
[MLC10] G. G. Marín, D. López-Rodríguez, and E. M. Casermeiro. “A New Multivalued Neural Network for Isomorphism Identification of Kinematic Chains”. In: J. Comput. Inf. Sci. Eng. 10.1 (2010). DOI: 10.1115/1.3330427. URL: https://doi.org/10.1115/1.3330427.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] K. Dewangan and P. Prajapati. “Detection of Isomorphism and Inversions of Kinematic Chains Using an Evolutionary Approach”. In: Recent Advances in Machines, Mechanisms, Materials and Design. Springer Nature Singapore, 2024, p. 105–132. ISBN: 9789819754236. DOI: 10.1007/978-981-97-5423-6_9. URL: http://dx.doi.org/10.1007/978-981-97-5423-6_9.
[2] H. Eleashy. “A new atlas for 8-bar kinematic chains with up to 3 prismatic pairs using Joint Sorting Code”. In: Mechanism and Machine Theory 124 (Jun. 2018), p. 118–132. ISSN: 0094-114X. DOI: 10.1016/j.mechmachtheory.2018.02.006. URL: http://dx.doi.org/10.1016/j.mechmachtheory.2018.02.006.
[3] S. Gao, S. Zhang, X. Chen, et al. “A framework for collaborative top-down assembly design”. In: Computers in Industry 64.8 (Oct. 2013), p. 967–983. ISSN: 0166-3615. DOI: 10.1016/j.compind.2013.05.007. URL: http://dx.doi.org/10.1016/j.compind.2013.05.007.
[4] L. He, F. Liu, L. Sun, et al. “Isomorphic identification for kinematic chains using variable high-order adjacency link values”. In: Journal of Mechanical Science and Technology 33.10 (Oct. 2019), p. 4899–4907. ISSN: 1976-3824. DOI: 10.1007/s12206-019-0930-9. URL: http://dx.doi.org/10.1007/s12206-019-0930-9.
[5] M. Helal, J. W. Hu, and H. Eleashy. “A New Algorithm for Unique Representation and Isomorphism Detection of Planar Kinematic Chains with Simple and Multiple Joints”. In: Processes 9.4 (Mar. 2021), p. 601. ISSN: 2227-9717. DOI: 10.3390/pr9040601. URL: http://dx.doi.org/10.3390/pr9040601.
[6] M. Helal, J. W. Hu, and H. Eleashy. “Automatic Generation of N-Bar Planar Linkages Containing Sliders”. In: Applied Sciences 11.8 (Apr. 2021), p. 3546. ISSN: 2076-3417. DOI: 10.3390/app11083546. URL: http://dx.doi.org/10.3390/app11083546.
[7] X. Liu, H. Gui, X. Liu, et al. “Tree Structure Representation and Isomorphism Identification of Assur Groups”. In: Proceedings of the 2020 3rd International Conference on E-Business, Information Management and Computer Science. EBIMCS 2020. ACM, Dec. 2020, p. 431–436. DOI: 10.1145/3453187.3453373. URL: http://dx.doi.org/10.1145/3453187.3453373.
[8] M. K. Lohumi, A. Mohammad, and I. A. Khan. “Hierarchical clustering approach for determination of isomorphism among planar kinematic chains and their derived mechanisms”. In: Journal of Mechanical Science and Technology 26.12 (Dec. 2012), p. 4041–4046. ISSN: 1976-3824. DOI: 10.1007/s12206-012-0902-9. URL: http://dx.doi.org/10.1007/s12206-012-0902-9.
[9] W. Pan and R. Li. “The Equivalent Mechanical Model of Topological Graphs and the Isomorphism Identification of Kinematic Chains”. In: Journal of Mechanisms and Robotics 16.7 (Nov. 2023). ISSN: 1942-4310. DOI: 10.1115/1.4063869. URL: http://dx.doi.org/10.1115/1.4063869.
[10] .. S.R.Madan. “IDENTIFICATION OF ISOMORPHISM AND DETECTION OF DISTINCT MECHANISM OF KINEMATIC CHAINS USING INVARIENT LABELING OF LINKS”. In: International Journal of Research in Engineering and Technology 03.01 (Jan. 2014), p. 17–23. ISSN: 2319-1163. DOI: 10.15623/ijret.2014.0301004. URL: http://dx.doi.org/10.15623/ijret.2014.0301004.
[11] H. Shang, X. Chen, J. Li, et al. “Isomorphism detection of kinematic chains based on the improved circuit simulation method”. In: International Journal of Computer Applications in Technology 46.3 (2013), p. 236. ISSN: 1741-5047. DOI: 10.1504/ijcat.2013.052800. URL: http://dx.doi.org/10.1504/ijcat.2013.052800.
[12] A. Shukla and S. Sanyal. “Gradient method for identification of isomorphism of planar kinematic chains”. In: Australian Journal of Mechanical Engineering 18.1 (Sep. 2017), p. 45–62. ISSN: 2204-2253. DOI: 10.1080/14484846.2017.1374815. URL: http://dx.doi.org/10.1080/14484846.2017.1374815.
[13] L. Sun, Z. Ye, F. Lu, et al. “Similar Vertices and Isomorphism Detection for Planar Kinematic Chains Based on Ameliorated Multi-Order Adjacent Vertex Assignment Sequence”. In: Chinese Journal of Mechanical Engineering 34.1 (Feb. 2021). ISSN: 2192-8258. DOI: 10.1186/s10033-020-00521-8. URL: http://dx.doi.org/10.1186/s10033-020-00521-8.
[14] W. Sun, J. Kong, and L. Sun. “A joint–joint matrix representation of planar kinematic chains with multiple joints and isomorphism identification”. In: Advances in Mechanical Engineering 10.6 (Jun. 2018). ISSN: 1687-8140. DOI: 10.1177/1687814018778404. URL: http://dx.doi.org/10.1177/1687814018778404.
[15] W. SUN, J. KONG, and L. SUN. “The improved hamming number method to detect isomorphism for kinematic chain with multiple joints”. In: Journal of Advanced Mechanical Design, Systems, and Manufacturing 11.5 (2017), p. JAMDSM0061–JAMDSM0061. ISSN: 1881-3054. DOI: 10.1299/jamdsm.2017jamdsm0061. URL: http://dx.doi.org/10.1299/jamdsm.2017jamdsm0061.
[16] V. Venkata Kamesh, K. Mallikarjuna Rao, and A. Balaji Srinivasa Rao. “An Innovative Approach to Detect Isomorphism in Planar and Geared Kinematic Chains Using Graph Theory”. In: Journal of Mechanical Design 139.12 (Oct. 2017). ISSN: 1528-9001. DOI: 10.1115/1.4037628. URL: http://dx.doi.org/10.1115/1.4037628.
[17] S. Wei, K. Jianyi, W. Xingdong, et al. “Description and Isomorphism Judgment of the Kinematic Chain with Multiple Joints Based on Link-link Adjacency Matrix”. In: Journal of Mechanical Engineering 56.3 (2020), p. 41. ISSN: 0577-6686. DOI: 10.3901/jme.2020.03.041. URL: http://dx.doi.org/10.3901/jme.2020.03.041.
[18] L. Yan, G. Cao, N. Wang, et al. “Schematic Diagrams Design of Displacement Suppression Mechanism with One Degree-of-Freedom in a Rope-Guided Hoisting System”. In: Symmetry 12.3 (Mar. 2020), p. 474. ISSN: 2073-8994. DOI: 10.3390/sym12030474. URL: http://dx.doi.org/10.3390/sym12030474.
[19] W. Yang, H. Ding, and A. Kecskeméthy. “Structural synthesis towards intelligent design of plane mechanisms: Current status and future research trend”. In: Mechanism and Machine Theory 171 (May. 2022), p. 104715. ISSN: 0094-114X. DOI: 10.1016/j.mechmachtheory.2021.104715. URL: http://dx.doi.org/10.1016/j.mechmachtheory.2021.104715.
[20] L. Yu, S. Zhou, and H. Wang. “Mechanism Isomorphism Identification Based on Decision Tree Algorithm and Hybrid Particle Swarm Optimization Algorithm”. In: Neural Processing Letters 56.6 (Nov. 2024). ISSN: 1573-773X. DOI: 10.1007/s11063-024-11711-z. URL: http://dx.doi.org/10.1007/s11063-024-11711-z.
[21] K. Zeng, X. Fan, M. Dong, et al. “A fast algorithm for kinematic chain isomorphism identification based on dividing and matching vertices”. In: Mechanism and Machine Theory 72 (Feb. 2014), p. 25–38. ISSN: 0094-114X. DOI: 10.1016/j.mechmachtheory.2013.09.011. URL: http://dx.doi.org/10.1016/j.mechmachtheory.2013.09.011.