On -fuzzy Chu correspondences

uncategorised
Authors

Ondrej Kridlo

Manuel Ojeda-Aciego

Published

1 January 2011

Publication details

Int. J. Comput. Math. vol. 88 (9), pages 1808–1818.

Links

DOI

 

Abstract

In this paper, we focus on the framework of Chu correspondences introduced by Mori for a classical formal concept analysis, and we propose a suitable extension of the framework in a more general and flexible environment based on L-fuzzy sets, and define the notions of L-Chu correspondence and of L-bond. After introducing the generalized framework, the sets of L-Chu correspondences and of L-bonds are proved to have the structure of complete lattice and, furthermore, there exists a natural anti-isomorphism between them.

Citation

Please, cite this work as:

[KO11] O. Kridlo and M. Ojeda-Aciego. “On L-fuzzy Chu correspondences”. In: Int. J. Comput. Math. 88.9 (2011), pp. 1808-1818. DOI: 10.1080/00207160903494147. URL: https://doi.org/10.1080/00207160903494147.

@Article{Kridlo2011,
     author = {Ondrej Kridlo and Manuel Ojeda-Aciego},
     journal = {Int. J. Comput. Math.},
     title = {On -fuzzy Chu correspondences},
     year = {2011},
     number = {9},
     pages = {1808–1818},
     volume = {88},
     bibsource = {dblp computer science bibliography, https://dblp.org},
     biburl = {https://dblp.org/rec/journals/ijcm/KridloO11.bib},
     doi = {10.1080/00207160903494147},
     timestamp = {Tue, 29 Dec 2020 00:00:00 +0100},
     url = {https://doi.org/10.1080/00207160903494147},
}

Bibliometric data

The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.

  • Citations
  • CrossRef - Citation Indexes: 11
  • Scopus - Citation Indexes: 17
  • Captures
  • Mendeley - Readers: 5

Cites

The following graph plots the number of cites received by this work from its publication, on a yearly basis.

20212019201820172016201520142013201201234
yearcites

Papers citing this work

The following is a non-exhaustive list of papers that cite this work:

[1] L. Antoni, I. P. Cabrera, S. Krajči, et al. “The Chu construction and generalized formal concept analysis”. In: International Journal of General Systems 46.5 (Jul. 2017), p. 458–474. ISSN: 1563-5104. DOI: 10.1080/03081079.2017.1349579. URL: http://dx.doi.org/10.1080/03081079.2017.1349579.

[2] L. Antoni, S. Krajči, and O. Krídlo. “On Fuzzy Generalizations of Concept Lattices”. In: Interactions Between Computational Intelligence and Mathematics. Springer International Publishing, 2018, p. 79–103. ISBN: 9783319746814. DOI: 10.1007/978-3-319-74681-4_6. URL: http://dx.doi.org/10.1007/978-3-319-74681-4_6.

[3] P. Butka, J. Pócs, J. Pócsová, et al. “Multiple Data Tables Processing via One-Sided Concept Lattices”. In: Multimedia and Internet Systems: Theory and Practice. Springer Berlin Heidelberg, 2013, p. 89–98. ISBN: 9783642323355. DOI: 10.1007/978-3-642-32335-5_9. URL: http://dx.doi.org/10.1007/978-3-642-32335-5_9.

[4] I. P. Cabrera, P. Cordero, E. Muñoz-Velasco, et al. “Relational Connections Between Preordered Sets”. In: Applied Physics, System Science and Computers III. Springer International Publishing, 2019, p. 163–169. ISBN: 9783030215071. DOI: 10.1007/978-3-030-21507-1_24. URL: http://dx.doi.org/10.1007/978-3-030-21507-1_24.

[5] O. Krídlo, S. Krajči, and L. Antoni. “Formal concept analysis of higher order”. In: International Journal of General Systems 45.2 (Jan. 2016), p. 116–134. ISSN: 1563-5104. DOI: 10.1080/03081079.2015.1072924. URL: http://dx.doi.org/10.1080/03081079.2015.1072924.

[6] O. Krídlo, S. Krajči, and M. Ojeda-Aciego. “The Category of L-Chu Correspondences and the Structure of L-Bonds”. In: Fundamenta Informaticae 115.4 (2012), p. 297–325. ISSN: 0169-2968. DOI: 10.3233/fi-2012-657. URL: http://dx.doi.org/10.3233/fi-2012-657.

[7] O. Krídlo and M. Ojeda-Aciego. “Formal Concept Analysis and Structures Underlying Quantum Logics”. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations. Springer International Publishing, 2018, p. 574–584. ISBN: 9783319914732. DOI: 10.1007/978-3-319-91473-2_49. URL: http://dx.doi.org/10.1007/978-3-319-91473-2_49.

[8] O. Krídlo and M. Ojeda-Aciego. “Relating Hilbert-Chu Correspondences and Big Toy Models for Quantum Mechanics”. In: Computational Intelligence and Mathematics for Tackling Complex Problems. Springer International Publishing, May. 2019, p. 75–80. ISBN: 9783030160241. DOI: 10.1007/978-3-030-16024-1_10. URL: http://dx.doi.org/10.1007/978-3-030-16024-1_10.

[9] O. Krídlo and M. Ojeda-Aciego. “Revising the link between L-Chu correspondences and completely lattice L-ordered sets”. In: Annals of Mathematics and Artificial Intelligence 72.1–2 (Apr. 2014), p. 91–113. ISSN: 1573-7470. DOI: 10.1007/s10472-014-9416-8. URL: http://dx.doi.org/10.1007/s10472-014-9416-8.

[10] A. Mora, P. Cordero, M. Enciso, et al. “Closure via functional dependence simplification”. In: International Journal of Computer Mathematics 89.4 (Mar. 2012), p. 510–526. ISSN: 1029-0265. DOI: 10.1080/00207160.2011.644275. URL: http://dx.doi.org/10.1080/00207160.2011.644275.

[11] J. Pócs and J. Pócsová. “On Bonds for Generalized One-Sided Concept Lattices”. In: Mathematics 9.3 (Jan. 2021), p. 211. ISSN: 2227-7390. DOI: 10.3390/math9030211. URL: http://dx.doi.org/10.3390/math9030211.

[12] J. Vigo-Aguiar and J. A. Lopez-Ramos. “Applications of computational mathematics in science and engineering”. In: International Journal of Computer Mathematics 88.9 (Jun. 2011), p. 1805–1807. ISSN: 1029-0265. DOI: 10.1080/00207160.2011.578828. URL: http://dx.doi.org/10.1080/00207160.2011.578828.