Finitary coalgebraic multisemilattices and multilattices
Abstract
Citation
Please, cite this work as:
[Cab+12] I. P. Cabrera, P. Cordero, G. Gutiérrez, et al. “Finitary coalgebraic multisemilattices and multilattices”. In: Appl. Math. Comput. 219.1 (2012), pp. 31-44. DOI: 10.1016/J.AMC.2011.10.081. URL: https://doi.org/10.1016/j.amc.2011.10.081.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] D. C. Awouafack and E. Fouotsa. “The Properties of Maximal Filters in Multilattices”. In: Journal of Mathematics 2022.1 (Jan. 2022). Ed. by F. Mynard. ISSN: 2314-4785. DOI: 10.1155/2022/9714656. URL: http://dx.doi.org/10.1155/2022/9714656.
[2] D. C. Awouafack, B. B. Koguep Njionou, and C. Lélé. “The Prime Filter Theorem for Multilattices”. In: International Journal of Mathematics and Mathematical Sciences 2022 (Apr. 2022). Ed. by F. Mynard, p. 1–5. ISSN: 0161-1712. DOI: 10.1155/2022/8060503. URL: http://dx.doi.org/10.1155/2022/8060503.
[3] I. Cabrera, P. Cordero, G. Gutiérrez, et al. “On residuation in multilattices: Filters, congruences, and homomorphisms”. In: Fuzzy Sets and Systems 234 (Jan. 2014), p. 1–21. ISSN: 0165-0114. DOI: 10.1016/j.fss.2013.04.002. URL: http://dx.doi.org/10.1016/j.fss.2013.04.002.
[4] F. García-Pardo, I. Cabrera, P. Cordero, et al. “On the definition of suitable orderings to generate adjunctions over an unstructured codomain”. In: Information Sciences 286 (Dec. 2014), p. 173–187. ISSN: 0020-0255. DOI: 10.1016/j.ins.2014.07.006. URL: http://dx.doi.org/10.1016/j.ins.2014.07.006.
[5] P. C. Kengne, B. B. Koguep Njionou, D. C. Awouafack, et al. “-Fuzzy Cosets of -Fuzzy Filters of Residuated Multilattices”. In: International Journal of Mathematics and Mathematical Sciences 2022 (Sep. 2022). Ed. by F. Mynard, p. 1–14. ISSN: 0161-1712. DOI: 10.1155/2022/6833943. URL: http://dx.doi.org/10.1155/2022/6833943.
[6] G. Nguepy Dongmo, B. B. Koguep Njionou, L. Kwuida, et al. “Multilattice as the set of truth values for fuzzy rough sets”. In: Journal of Applied Non-Classical Logics (Jul. 2024), p. 1–20. ISSN: 1958-5780. DOI: 10.1080/11663081.2024.2373016. URL: http://dx.doi.org/10.1080/11663081.2024.2373016.