On the Dedekind-MacNeille completion and formal concept analysis based on multilattices
Abstract
Citation
Please, cite this work as:
[Med+16] J. Medina-Moreno, M. Ojeda-Aciego, J. Pócs, et al. “On the Dedekind-MacNeille completion and formal concept analysis based on multilattices”. In: Fuzzy Sets Syst. 303 (2016), pp. 1-20. DOI: 10.1016/J.FSS.2016.01.007. URL: https://doi.org/10.1016/j.fss.2016.01.007.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] Ľ. Antoni, P. Eliaš, J. Guniš, et al. “Bimorphisms and attribute implications in heterogeneous formal contexts”. In: International Journal of Approximate Reasoning 172 (Sep. 2024), p. 109245. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2024.109245. URL: http://dx.doi.org/10.1016/j.ijar.2024.109245.
[2] L. Antoni, P. Eliaš, T. Horváth, et al. “Squared Symmetric Formal Contexts and Their Connections with Correlation Matrices”. In: Graph-Based Representation and Reasoning. Springer Nature Switzerland, 2023, p. 19–27. ISBN: 9783031409608. DOI: 10.1007/978-3-031-40960-8_2. URL: http://dx.doi.org/10.1007/978-3-031-40960-8_2.
[3] Ľ. Antoni, P. Eliaš, S. Krajči, et al. “Heterogeneous formal context and its decomposition by heterogeneous fuzzy subsets”. In: Fuzzy Sets and Systems 451 (Dec. 2022), p. 361–384. ISSN: 0165-0114. DOI: 10.1016/j.fss.2022.05.015. URL: http://dx.doi.org/10.1016/j.fss.2022.05.015.
[4] L. Antoni, S. Krajči, and O. Krídlo. “On Fuzzy Generalizations of Concept Lattices”. In: Interactions Between Computational Intelligence and Mathematics. Springer International Publishing, 2018, p. 79–103. ISBN: 9783319746814. DOI: 10.1007/978-3-319-74681-4_6. URL: http://dx.doi.org/10.1007/978-3-319-74681-4_6.
[5] L. Antoni, S. Krajči, and O. Krídlo. “On stability of fuzzy formal concepts over randomized one-sided formal context”. In: Fuzzy Sets and Systems 333 (Feb. 2018), p. 36–53. ISSN: 0165-0114. DOI: 10.1016/j.fss.2017.04.006. URL: http://dx.doi.org/10.1016/j.fss.2017.04.006.
[6] L. Antoni, S. Krajči, and O. Krídlo. “Representation of fuzzy subsets by Galois connections”. In: Fuzzy Sets and Systems 326 (Nov. 2017), p. 52–68. ISSN: 0165-0114. DOI: 10.1016/j.fss.2017.05.020. URL: http://dx.doi.org/10.1016/j.fss.2017.05.020.
[7] J. M. Chen, M. U. Rehman, and X. V. Vo. “Clustering commodity markets in space and time: Clarifying returns, volatility, and trading regimes through unsupervised machine learning”. In: Resources Policy 73 (Oct. 2021), p. 102162. ISSN: 0301-4207. DOI: 10.1016/j.resourpol.2021.102162. URL: http://dx.doi.org/10.1016/j.resourpol.2021.102162.
[8] M. E. Cornejo, J. C. Díaz-Moreno, and J. Medina. “Generalized quantifiers in formal concept analysis”. In: Journal of Computational and Applied Mathematics 404 (Apr. 2022), p. 113772. ISSN: 0377-0427. DOI: 10.1016/j.cam.2021.113772. URL: http://dx.doi.org/10.1016/j.cam.2021.113772.
[9] M. E. Cornejo, L. Fariñas del Cerro, and J. Medina. “A logical characterization of multi-adjoint algebras”. In: Fuzzy Sets and Systems 425 (Nov. 2021), p. 140–156. ISSN: 0165-0114. DOI: 10.1016/j.fss.2021.02.003. URL: http://dx.doi.org/10.1016/j.fss.2021.02.003.
[10] M. E. Cornejo, D. Lobo, and J. Medina. “Solving Generalized Equations with Bounded Variables and Multiple Residuated Operators”. In: Mathematics 8.11 (Nov. 2020), p. 1992. ISSN: 2227-7390. DOI: 10.3390/math8111992. URL: http://dx.doi.org/10.3390/math8111992.
[11] M. E. Cornejo, J. Medina, E. Ramírez-Poussa, et al. “Preferences in discrete multi-adjoint formal concept analysis”. In: Information Sciences 650 (Dec. 2023), p. 119507. ISSN: 0020-0255. DOI: 10.1016/j.ins.2023.119507. URL: http://dx.doi.org/10.1016/j.ins.2023.119507.
[12] P. Eliaš, L. Antoni, O. Krídlo, et al. “Additional Notes on Heterogeneous Concept-Forming Operators”. In: Computational Intelligence and Mathematics for Tackling Complex Problems 5. Springer Nature Switzerland, 2024, p. 1–7. ISBN: 9783031469794. DOI: 10.1007/978-3-031-46979-4_1. URL: http://dx.doi.org/10.1007/978-3-031-46979-4_1.
[13] B. B. Koguep Njionou, L. Kwuida, and C. Lele. “Formal Concepts and Residuation on Multilattices”. In: Fundamenta Informaticae 188.4 (Jun. 2023), p. 217–237. ISSN: 1875-8681. DOI: 10.3233/fi-222147. URL: http://dx.doi.org/10.3233/fi-222147.
[14] H. Lai and L. Shen. “Multi-adjoint concept lattices via quantaloid-enriched categories”. In: Fuzzy Sets and Systems 405 (Feb. 2021), p. 74–87. ISSN: 0165-0114. DOI: 10.1016/j.fss.2020.03.007. URL: http://dx.doi.org/10.1016/j.fss.2020.03.007.
[15] Y. Xu, L. Liu, and X. Zhang. “Multilattices on typical hesitant fuzzy sets”. In: Information Sciences 491 (Jul. 2019), p. 63–73. ISSN: 0020-0255. DOI: 10.1016/j.ins.2019.03.078. URL: http://dx.doi.org/10.1016/j.ins.2019.03.078.