On the Dedekind-MacNeille completion and formal concept analysis based on multilattices

uncategorised
Authors

Jesús Medina-Moreno

Manuel Ojeda-Aciego

Jozef Pócs

Eloísa Ramírez-Poussa

Published

1 January 2016

Publication details

Fuzzy Sets Syst. vol. 303 , pages 1–20.

Links

DOI

 

Abstract

Citation

Please, cite this work as:

[Med+16] J. Medina-Moreno, M. Ojeda-Aciego, J. Pócs, et al. “On the Dedekind-MacNeille completion and formal concept analysis based on multilattices”. In: Fuzzy Sets Syst. 303 (2016), pp. 1-20. DOI: 10.1016/J.FSS.2016.01.007. URL: https://doi.org/10.1016/j.fss.2016.01.007.

@Article{MedinaMoreno2016,
     author = {Jes{’u}s Medina-Moreno and Manuel Ojeda-Aciego and Jozef P{’o}cs and Elo'Ram'-Poussa},
     journal = {Fuzzy Sets Syst.},
     title = {On the Dedekind-MacNeille completion and formal concept analysis based on multilattices},
     year = {2016},
     pages = {1–20},
     volume = {303},
     bibsource = {dblp computer science bibliography, https://dblp.org},
     biburl = {https://dblp.org/rec/journals/fss/Medina-MorenoOP16.bib},
     doi = {10.1016/J.FSS.2016.01.007},
     timestamp = {Mon, 15 Jun 2020 01:00:00 +0200},
     url = {https://doi.org/10.1016/j.fss.2016.01.007},
}

Bibliometric data

The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.

  • Citations
  • CrossRef - Citation Indexes: 5
  • Scopus - Citation Indexes: 15
  • Captures
  • Mendeley - Readers: 9

Cites

The following graph plots the number of cites received by this work from its publication, on a yearly basis.

202420232022202120202019201820170123
yearcites

Papers citing this work

The following is a non-exhaustive list of papers that cite this work:

[1] Ľ. Antoni, P. Eliaš, J. Guniš, et al. “Bimorphisms and attribute implications in heterogeneous formal contexts”. In: International Journal of Approximate Reasoning 172 (Sep. 2024), p. 109245. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2024.109245. URL: http://dx.doi.org/10.1016/j.ijar.2024.109245.

[2] L. Antoni, P. Eliaš, T. Horváth, et al. “Squared Symmetric Formal Contexts and Their Connections with Correlation Matrices”. In: Graph-Based Representation and Reasoning. Springer Nature Switzerland, 2023, p. 19–27. ISBN: 9783031409608. DOI: 10.1007/978-3-031-40960-8_2. URL: http://dx.doi.org/10.1007/978-3-031-40960-8_2.

[3] Ľ. Antoni, P. Eliaš, S. Krajči, et al. “Heterogeneous formal context and its decomposition by heterogeneous fuzzy subsets”. In: Fuzzy Sets and Systems 451 (Dec. 2022), p. 361–384. ISSN: 0165-0114. DOI: 10.1016/j.fss.2022.05.015. URL: http://dx.doi.org/10.1016/j.fss.2022.05.015.

[4] L. Antoni, S. Krajči, and O. Krídlo. “On Fuzzy Generalizations of Concept Lattices”. In: Interactions Between Computational Intelligence and Mathematics. Springer International Publishing, 2018, p. 79–103. ISBN: 9783319746814. DOI: 10.1007/978-3-319-74681-4_6. URL: http://dx.doi.org/10.1007/978-3-319-74681-4_6.

[5] L. Antoni, S. Krajči, and O. Krídlo. “On stability of fuzzy formal concepts over randomized one-sided formal context”. In: Fuzzy Sets and Systems 333 (Feb. 2018), p. 36–53. ISSN: 0165-0114. DOI: 10.1016/j.fss.2017.04.006. URL: http://dx.doi.org/10.1016/j.fss.2017.04.006.

[6] L. Antoni, S. Krajči, and O. Krídlo. “Representation of fuzzy subsets by Galois connections”. In: Fuzzy Sets and Systems 326 (Nov. 2017), p. 52–68. ISSN: 0165-0114. DOI: 10.1016/j.fss.2017.05.020. URL: http://dx.doi.org/10.1016/j.fss.2017.05.020.

[7] J. M. Chen, M. U. Rehman, and X. V. Vo. “Clustering commodity markets in space and time: Clarifying returns, volatility, and trading regimes through unsupervised machine learning”. In: Resources Policy 73 (Oct. 2021), p. 102162. ISSN: 0301-4207. DOI: 10.1016/j.resourpol.2021.102162. URL: http://dx.doi.org/10.1016/j.resourpol.2021.102162.

[8] M. E. Cornejo, J. C. Díaz-Moreno, and J. Medina. “Generalized quantifiers in formal concept analysis”. In: Journal of Computational and Applied Mathematics 404 (Apr. 2022), p. 113772. ISSN: 0377-0427. DOI: 10.1016/j.cam.2021.113772. URL: http://dx.doi.org/10.1016/j.cam.2021.113772.

[9] M. E. Cornejo, L. Fariñas del Cerro, and J. Medina. “A logical characterization of multi-adjoint algebras”. In: Fuzzy Sets and Systems 425 (Nov. 2021), p. 140–156. ISSN: 0165-0114. DOI: 10.1016/j.fss.2021.02.003. URL: http://dx.doi.org/10.1016/j.fss.2021.02.003.

[10] M. E. Cornejo, D. Lobo, and J. Medina. “Solving Generalized Equations with Bounded Variables and Multiple Residuated Operators”. In: Mathematics 8.11 (Nov. 2020), p. 1992. ISSN: 2227-7390. DOI: 10.3390/math8111992. URL: http://dx.doi.org/10.3390/math8111992.

[11] M. E. Cornejo, J. Medina, E. Ramírez-Poussa, et al. “Preferences in discrete multi-adjoint formal concept analysis”. In: Information Sciences 650 (Dec. 2023), p. 119507. ISSN: 0020-0255. DOI: 10.1016/j.ins.2023.119507. URL: http://dx.doi.org/10.1016/j.ins.2023.119507.

[12] P. Eliaš, L. Antoni, O. Krídlo, et al. “Additional Notes on Heterogeneous Concept-Forming Operators”. In: Computational Intelligence and Mathematics for Tackling Complex Problems 5. Springer Nature Switzerland, 2024, p. 1–7. ISBN: 9783031469794. DOI: 10.1007/978-3-031-46979-4_1. URL: http://dx.doi.org/10.1007/978-3-031-46979-4_1.

[13] B. B. Koguep Njionou, L. Kwuida, and C. Lele. “Formal Concepts and Residuation on Multilattices”. In: Fundamenta Informaticae 188.4 (Jun. 2023), p. 217–237. ISSN: 1875-8681. DOI: 10.3233/fi-222147. URL: http://dx.doi.org/10.3233/fi-222147.

[14] H. Lai and L. Shen. “Multi-adjoint concept lattices via quantaloid-enriched categories”. In: Fuzzy Sets and Systems 405 (Feb. 2021), p. 74–87. ISSN: 0165-0114. DOI: 10.1016/j.fss.2020.03.007. URL: http://dx.doi.org/10.1016/j.fss.2020.03.007.

[15] Y. Xu, L. Liu, and X. Zhang. “Multilattices on typical hesitant fuzzy sets”. In: Information Sciences 491 (Jul. 2019), p. 63–73. ISSN: 0020-0255. DOI: 10.1016/j.ins.2019.03.078. URL: http://dx.doi.org/10.1016/j.ins.2019.03.078.