The Chu construction and generalized formal concept analysis
Abstract
We continue studying the connections between the Chu construction on the category ChuCors of formal contexts and Chu correspondences, and generalizations of Formal Concept Analysis (FCA). All the required constructions like categorical product, tensor product, together with its bifunctor properties are introduced and proved. The final section focuses on how the second-order generalization of FCA can be built up in terms of the Chu construction.
Citation
Please, cite this work as:
[Lub+17] L’ubom', I. P. Cabrera, S. Krajci, et al. “The Chu construction and generalized formal concept analysis”. In: Int. J. Gen. Syst. 46.5 (2017), pp. 458-474. DOI: 10.1080/03081079.2017.1349579. URL: https://doi.org/10.1080/03081079.2017.1349579.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] Ľ. Antoni, D. Bruothová, J. Guniš, et al. “Attribute Exploration in Formal Concept Analysis and Measuring of Pupils’ Computational Thinking”. In: Towards Digital Intelligence Society. Springer International Publishing, Dec. 2020, p. 160–180. ISBN: 9783030638726. DOI: 10.1007/978-3-030-63872-6_8. URL: http://dx.doi.org/10.1007/978-3-030-63872-6_8.
[2] O. Krídlo, M. Ojeda-Aciego, T. Put, et al. “On Some Categories Underlying Knowledge Graphs”. In: Computational Intelligence and Mathematics for Tackling Complex Problems 2. Springer International Publishing, 2022, p. 199–205. ISBN: 9783030888176. DOI: 10.1007/978-3-030-88817-6_23. URL: http://dx.doi.org/10.1007/978-3-030-88817-6_23.
[3] N. Madrid and M. Ojeda-Aciego. “Some Relationships Between the Notions of f-Inclusion and f-Contradiction”. In: Computational Intelligence and Mathematics for Tackling Complex Problems 2. Springer International Publishing, 2022, p. 175–181. ISBN: 9783030888176. DOI: 10.1007/978-3-030-88817-6_20. URL: http://dx.doi.org/10.1007/978-3-030-88817-6_20.
[4] J. Pócs and J. Pócsová. “On Bonds for Generalized One-Sided Concept Lattices”. In: Mathematics 9.3 (Jan. 2021), p. 211. ISSN: 2227-7390. DOI: 10.3390/math9030211. URL: http://dx.doi.org/10.3390/math9030211.
[5] F. Zhao, Q. Jin, and L. Li. “The axiomatic characterizations on L-generalized fuzzy neighborhood system-based approximation operators”. In: International Journal of General Systems 47.2 (Dec. 2017), p. 155–173. ISSN: 1563-5104. DOI: 10.1080/03081079.2017.1407928. URL: http://dx.doi.org/10.1080/03081079.2017.1407928.